C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Advanced Calculus

Subject Code : 4SC03MTC1

Branch : B. Sc. (Mathematics)

Semester : 3 Date : 3 / 12 / 2015 Time : 2:30 To 5:30 Marks : 70

- Instructions:
 - (1) Use of Programmable calculator & any other electronic instrument is prohibited.
 - (2) Instructions written on main answer book are strictly to be obeyed.
 - (3) Draw neat diagrams and figures (if necessary) at right places.
 - (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	If $z = x^2y + xy + 1$, find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.	[2]
	b)	Check whether the function $f(x, y) = \frac{x^2 + y^2}{y}$ is homogeneous or not.	[2]
	c)	Find $\beta(6, 11)$.	[2]
	d)	If $u = x^2 + y^2$, $x = at^2$, $y = 2at$ then find $\frac{\partial u}{\partial t}$.	[2]
	e)	If $x = r \cos \theta$, $y = r \sin \theta$ then find $\frac{\partial(x,y)}{\partial(r,\theta)}$.	[2]
	f)	Show that $f(x) = e^x$ is always increasing function for any value of x.	[2]
	g)	Define: gamma function.	[2]
Attemp	ot any f	four questions from Q-2 to Q-8	
Q-2	v	Attempt all questions	(14)
	a)	Prove that $\lim_{(x,y)\to(0,0)} \frac{xy}{y^2-x^2}$ does not exist.	[5]
	b)	If $x = r \cos \theta$, $y = r \sin \theta$ then prove that	
		$\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right].$	[5]
	c)	If $u = (2x^2 + y^2)(\log x - \log y)$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$.	[4]
Q-3		Attempt all questions	(14)
	a)	Prove that $y = x + 2$ is an asymptote of the curve $y = \frac{x^2 + 2x - 1}{x}$.	[5]
	b)	Find range of value of x for which $f(x) = x^4 - 6x^3 + 12x^2 + 5x + 7$ is concave upward or downward. Also find point of inflection.	[5]
	c)	Evaluate: $\int_{0}^{2} x^{4} (8 - x^{3})^{-\frac{1}{3}} dx.$	[4]
Q-4		Attempt all questions	(14)
-	a)	State and prove Duplication formula.	[7]
	b)	State and prove Taylor's series for function of two variables.	[7]

Page 1 || 2

Q-5		Attempt all questions	(14)
-	a)	Find the maximum value of $x^2y^3z^4$ subject to $2x + 3y + 4z = a$ using	[7]
		Lagrange's method.	[/]
	b)	Find extreme values for $f(x, y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$.	[7]
Q-6		Attempt all questions	(14)
	a)	If u and v are functions of r and s and r , s are functions of x and y . Then prove	
		that, $\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(r,s)} \cdot \frac{\partial(r,s)}{\partial(x,y)}$.	[5]
	b)	If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, prove that $x^2 \frac{\partial^2 u}{\partial x} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\cos 3u \sin u$.	[5]
	c)	If $x^3 + 3x^2y + 6xy^2 + y^3 = 1$, find $\frac{dy}{dx}$.	[4]
Q-7		Attempt all questions	(14)
-	a)	State and prove Euler's theorem.	[7]
		If $f(x) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ \end{cases}$	
	b)	(0, (x, y) = (0, 0))	[7]
	/	prove that the partial derivatives exist at $(0, 0)$. Also the function is not	
		continuous at (0,0).	
Q-8		Attempt all questions	(14)
	a)	Use Taylor's series to expand sin x cos y in power of $\left(x - \frac{\pi}{3}\right)\left(y - \frac{\pi}{4}\right)$.	[5]
	b)	Prove that $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$.	[5]
			[]]

c) Prove that
$$\beta(m,n) = \beta(n,m)$$
. [4]

Page 2 || 2

